
Analysis Of A Shopping Expedition (Logical) The Shopping Cart System

Part 2: Logical Model @Leslie Munday 2014

Updated: 10/3/2025 3:48 PM Page 1 of 22 Version 1

Part II (The Logical Model)
Part I demonstrated how to create a use case model from problem statements describing an

everyday business activity. This document demonstrates how the use case model is converted to

system requirements and a potential high-level design.

The use cases are analyzed in order to determine the data being impacted by the use case model.

Data is modeled using classes and the relationships between them. Classes are assigned

functionality that is described in the use case model. The functionality is captured as class

operations, which in turn can be used to derive functional system requirements.

The completed class diagram forms a potential Platform Independent Model (PIM) of the system

which may be used as a high-level system design.

This article discusses the requirements for the Shopping Cart System that was described in Part I.

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 2 of 22 Version 1

1 Architecture and Use Cases Summary

Part I included a system architecture and a set of use cases for the new Shopping Cart System.

These are summarized below.

Figure 1: Shopping System Architecture Diagram

In Figure 1: the shopping system communicates with the following systems:

 Store System – to send messages to the store clerk.

 Product Database – to obtain information about store products.

 Shopping Cart – to send messages to the shopper.

 Shopping Cart – to receive item information.

 Customer Database – to communicate information about the shopper.

 Item Detector – to receive information about items leaving the store.

 Cashier – to send information about items in the shopping cart.

 Cashier – to receive information about items that have been paid for.

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 3 of 22 Version 1

Figure 2: Shopping Cart System Use Cases

In Figure 2: the use cases for the Shopping System are concerned with:

 Assigning Cart To Shopper – allows a customer to start their shopping experience.

 Releasing Cart From Shopper – allows the customer to complete their shopping experience.

 Checking Out Shopper – allows the customer to remove items from the store.

 Monitoring Shopping Cart – ensures that the shopping experience goes as planned.

 Shopper Requests Assistance – allows a customer to to get help from the store.

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 4 of 22 Version 1

2 The Logical Model

A business analyst may think that the analysis has been completed in Part I (Use Case Model).

But systems analyst should ask the question, ‘How do you know that it is going to work?’ Up to

this point we have speculated on what appears to be an acceptable architectural solution to the

problem, but we have not yet researched the amount of actual work, required resources or

external restrictions (regulatory, technology, etc.
1
), that may impact the solution.

The use case model shows the functions that are to be implemented by systems, but it does not

discuss data and storage requirements, nor timings and communication between systems to

which the solution is deployed.

The next step in the process is to build a logical (or implementation independent) model of the

use cases. This will ensure that we have captured all the alternative flows and prove that there are

no inconsistencies, gaps or contradictions in the use cases. It will also allow us to derive a

complete set of consistent and feasible requirements that include storage and processing

estimates.

2.1 Identify Objects

The logical model can be derived from the use case model by adding potential
2
 objects (instances

of classes), to actions in order to determine the information that is handled by each use case.

[This example only considers the (new) Shopping System. Similar models may be created for

enhancements to the other systems.]

2.1.1 Shopping System Use Cases

The following objects are assigned to the use case actions for the Shopping System.

2.1.1.1 Assigning Cart To Customer

1
 Neither does this article discuss these.

2
 Potential – because as the logical model is built and formalized, the final classes may look very different.

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 5 of 22 Version 1

Figure 3: Assigning Cart To Customer Object Mapping

Figure 3: shows:

Reading Card – Creates a system object named ShopperCard.

Informing Customer They Are Shopping – Creates a Message to the customer.

Displaying Not A Shopper Message - Creates a Message to the customer.

Requesting Customer Information From Customer Database – Creates a Shopper object.

Displaying Card Read Error - Creates a Message to the customer.

2.1.1.2 Checking Out Shopper

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 6 of 22 Version 1

Figure 4: Checking Out Shopper Object Mapping

Figure 4: shows:

Informing Customer They May Remove Their Card – Creates a Message to the customer.

Informing Store Clerk To Assist Shopper – Creates a Message to the store clerk.

Informing Store Clerk Of Discrepancy – Creates a Message to the store clerk.

Requesting Total Items From Item Detector – Updates the Shopping object to verify the cart

contents.

Sending Items To Cashier – Creates a list of Items object.

Sending Message To Insert Card – Creates a Message to the customer.

Sending Message To Store Display - Creates a Message to the store clerk.

2.1.1.3 Releasing Cart From Shopper

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 7 of 22 Version 1

Figure 5: Releasing Cart From Shopper Object Mapping

Figure 5: shows:

Informing Shopper That They Have Unpaid Items – Creates a Message to the customer.

Informing Customer Database Shopper No Longer Assigned To Cart – Deletes the Shopper

object.

Sending Cart Usage To Customer Database – Updates the Shopper object.

Displaying Message To Return Cart To Store - Creates a Message to the customer.

2.1.1.4 Shopper Requests Assistance

Figure 6: Shopper Requests Assistance Objects

Figure 6: shows:

Sending Message To Store Clerk - Creates a Message to the store clerk.

2.1.1.5 System Is Monitoring Shopping Cart

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 8 of 22 Version 1

Figure 7: System Is Monitoring Shopping Cart Object Mapping

Figure 7: shows:

Displaying Removed Item – Uses the Items object to display a Message to the shopper.

Displaying Added Item - Uses the Items object to display a Message to the shopper.

Displaying Total Cost Of Contents – Uses the Shopping object to display a Message to the

shopper.

Requesting Item Information From Product Database – Updates the Items object.

2.1.2 Other System Object Mappings

Other Systems are the Cashier, Item Detector, Product Database and Customer Database

systems. The analysis of these systems is out of scope for this article.

Mapping objects to use cases is not an exact science. The purpose is to give a set of classes for

an initial logical model, such that every action is represented, not to get a complete set of classes

that match the use cases.

2.2 Build A Class Diagram

From the object diagrams, an initial class diagram is built. The class diagram captures objects as

instances of classes in diagram and shows the relationships between those classes. It also

demonstrates that every ‘system’ actor is accounted for in the model.

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 9 of 22 Version 1

Figure 8: Initial Class Diagram

In Figure 8: each object has been assigned one or more identifying attributes. These attributes are

propagated across relationships where appropriate. The classes are connected by relationships

that show how they communicate. Cardinality is added to these relationships to show how many

instances take part in the communication.

Finally, system actors are added to demonstrate external interfaces (these are not part of the

logical model, but added for consistency checking).

2.2.1 Identifying Attribute

This attribute(s) identify a unique instance of the class. They are assigned a value when the

instance is created; this value never changes.

2.2.2 Relational Attribute

For each relationship in the class diagram, one or more identifying attributes are passed from one

class to another. These attributes specify exactly which class instances are taking part in the

relationship (i.e. who is communication with who).

2.2.3 Cardinality

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 10 of 22 Version 1

For each relationship, the number of instances of each class participating in the relationship is

identified, and identifiers and foreign keys for each class are determined in order to cement those

relationships.

(Note that UML allows the use of the ‘*’ character to represent ‘any number’ of instances.

Personally I want to specify an absolute maximum and minimum for the cardinality at each end

of a relationship, since ‘any number’ is not implementable without infinite hardware resources. I

use the ‘*’ character to represent an ‘unknown’ number of instances.)

2.3 Build State Models

Each class is assigned functionality from the use case model. The associated attributes for those

functions are added to the class as attributes. The functionality of a class is modeled with a State

Transition Diagram (STD). Each STD begins with a Start state indicating that the instance does

not yet exist. It is created upon some triggering even occurring. It exists for a period of time and

is finally deleted, ending in a Stop state.

2.3.1 ShopperCard

The customer membership card has a card identifier. This can be used to identify the shopper. A

card instance is created when it inserted into the card reader. It is deleted when it is no longer (or

cannot be) associated with the cart.

The purpose of the ShopperCard is to monitor when the card is inserted into the cart, identify the

customer that the card belongs to and recognize when the card is no longer inserted in the cart.

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 11 of 22 Version 1

Figure 9: ShopperCard State Transition Diagram

When a card is inserted, an instance of the ShopperCard is created. The customer information

associated with the card is retrieved from the customer database; this identifies the shopper.

When the card is removed; or if the card cannot be read, or if the card is invalid, the

ShopperCard instance is deleted.

2.3.2 ShoppingCart

The ShoppingCart class is used to maintain an inventory of available shopping carts in the store.

A cart is added by the system administrator. ShoppingCarts are removed by the administrator, or

if the system can no longer detect the cart. The shopping cart is identified by an arbitrary

identification number.

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 12 of 22 Version 1

Figure 10: ShoppingCart State Transition Diagram

A ShoppingCart is created upon request from a list of available carts (not described here). The

cart instance is deleted upon request, or if the system is unable to detect the cart. At any time a

cart may be used to request assistance from a store clerk.

2.3.3 ActiveCart

Each shopper is recognized by a unique customer identifier in the customer database. The

shopper is either shopping or they are not. This information can be derived from the card.

Therefore the shopper is associated with an ActiveCart.

The primary purpose of the ActiveCart class is to identify when a cart is being used for shopping

and keep the shopper (and store clerk) informed about their experience. The ActiveCart monitors

the cart through to the shopper being unassigned from the cart.

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 13 of 22 Version 1

Figure 11: ActiveCart State Transition Diagram

The ActiveCart instance is created when a shopper is assigned to the cart. (Note that the cart does

not know why the shopper is assigned or unassigned to the cart, only that it happens. The

ShopperCard creates events assigning the customer to the cart or unassigning the shopper.)

Once assigned to a shopper, the cart is now shopping. The cart monitors items being added to or

removed from the cart. (The items class informs the ActiveCart when these events occur.) When

the cart approaches a checkout (signal received from the checkout system), the ActiveCart

requests that the shopper checkout their cart. Once checkout is complete, the ActiveCart is idle

and waiting for the shopper to become unassigned.

[Note that the ActiveCart instance is deleted if the corresponding ShoppingCart instance is

deleted. This is implicit in the class diagram, and not shown in the state transition diagram.]

2.3.4 Items

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 14 of 22 Version 1

The items class is used to monitor the scanning of items as they are added to or removed from an

active shopping cart. A set of items are identified by their productId. This class keeps track of

how many of each type of product are in the shopping cart.

Figure 12: Items State Transition Diagram

The shopping cart scanner recognizes when an item is added to the cart. If no item with that

product id is already in the cart, then a new item is created. As items of that product type are

added to or removed from the cart, the totals for that product are updated. [This method allows

for discounts on bulk items. It also allows for the total of a particular product to be displayed to

the shopper, instead of displaying each item of the same type.]

2.3.5 Shopping

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 15 of 22 Version 1

The shopping class keeps track of items in the shopping cart. Its primary purpose is to inform the

shopper of the status of their shopping, by updating the cart display. Shopping is created when a

cart is assigned to a store, and deleted when the cart is no longer assigned to the store.
3

Figure 13: Shopping State Transition Diagram

A Shopping instance is created when a cart is added to the shopping system. The Shopping

instance displays the value of items in the cart and maintains this total as items are added to or

removed from the cart. When the cart is removed from the Shopping System the Shopping

instance deleted.

2.3.6 Checkout

The Checkout class monitors the payment for items in an ActiveCart. A checkout instance is

created when a cart is detected by the checkout counter and deleted when the cart is no longer

within the checkout area. Each checkout instance is identified by a unique ID for the checkout

counter, by the cart that arrives at the checkout and the date and time of arrival. [The same cart

may arrive at the checkout several times in the same day, and we need to identify each time this

occurs. The same cart cannot arrive at 2 checkouts at the same time.]

3
 Note that Shopping and Items are different classes and that 1 shopping instance may include may instances of

Items.

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 16 of 22 Version 1

Figure 14: Checkout State Transition Diagram

A Checkout instance is created each time an ActiveCart is detected by the checkout counter. The

user is requested to make payment. When payment is accepted from the cashier, the Checkout

instance asks the item detector for the items detected in the checkout counter area. The Checkout

instance verifies that what is being paid for corresponds with the items leaving the checkout area.

Once the ActiveCart leaves the checkout area, the Checkout instance is deleted.

If anything goes wrong with the checkout process, a store clerk is sent a message to assist the

shopper and the reason for the assistance request. [The InformStoreClerk actions generate an

event to create a message for the store clerk display.]

2.3.7 Message

Messages are identified by the text that they convey to a display. A message is for a specific cart

or for a store clerk display or maybe for both. If the message is for a shopper, the CartId

identified which cart it is sent to. If the message is for the store clerk, the cartid identifies which

cart the message came from.

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 17 of 22 Version 1

[This is not a well-formed analysis class, because it introduces unnecessary design into the

model. The message text to the store clerk could include the cartid, or maybe no cartid is even

required. A better model is shown below.

Figure 15: Well-Formed Message]

A message is created upon request from another class and is deleted when it has been sent to the

receiving system.

Figure 16: Message State Transition Diagram

When a message is required, the Message instance is created. The message is sent to the

appropriate display. Once the message is acknowledged, it is removed from the display and

deleted.

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 18 of 22 Version 1

2.4 Operations and Events

Each transition is triggered by an event. Events come from external systems, from other class

instances within the system, or they may be generated by the class instance as a result of some

action completing within the class.

Each transition triggers an action. All actions are internal to the class instance and are captured

by the class specification. The detailed class diagram is updated with class operations resulting

from the state transition diagrams and the parameters used by those actions, as shown in Figure

17:

The Create and Delete actions are omitted from the diagram.

Figure 17: Detailed Class Diagram

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 19 of 22 Version 1

Each operation in Figure 17: may be written out as a set of functional requirement for the

Shopping system as follows:
4

2.4.1 Message

Operations performed by the Message class:

 SendMessageToDisplay – When (certain events occur) the Shopping System will send (one

of the following messages) to the (shopping cart of store clerk) display.
5

 WaitForAcknowledgement – When a message has been displayed to a shopping cart it will

be displayed until an acknowledgement is received and then removed.

 RemoveMessageFromDisplay – When (after a certain amount of time or if a user

acknowledges the message) the Shopping System will display TBD (some blank of logo type

display).

2.4.2 ShoppingCart

Operations performed by the ShoppingCart class:

 SendMessageToStoreClerk – When shopper requests assistance the Shopping System sends

an assistance request message to the store clerk with shopping cart information (cart id and

may include location in the store if known).

2.4.3 ShopperCard

Operations performed by the ShopperCard class:

 SendCardIdToCustomerDatabase – When a customer shopping card is inserted into the card

reader and read by the Shopping System it will send customer information to the customer

database with a request for shopper verification.

 ReadCard – When the customer database informs the Shopping System that a card inserted

into the card reader is for a valid shopper it will send a message to the shopping cart display.

 SendMessageToShopper – When a card inserted into the shopping cart is unable to be read,

the Shopping System will send a message to the shopping cart display that the card is not

understood. When a card inserted into the shopping cart is not recognized as a valid shopper

card, the Shopping System will send a message to the shopping cart display that the card is

not valid for this system.

 MonitorCardReader – When a valid shopper card is inserted into the shopping cart and that

card is removed, the Shopping System will display a message to the shopping cart that the

cart is free.

2.4.4 ActiveCart

Operations performed by the ActiveCart class:

4
 The mapping between requirement and operation may not be exactly 1-1, but verifying that every operation is

covered by 1 or more requirements will ensure that at least every system function is covered by the requirements.

5
 Each event creates a functional requirement – all captured by this single operation.

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 20 of 22 Version 1

 MonitorCart – When shopper is assigned to a cart and the active cart is no detected by a

checkout the Shopping System will update the cart display with items and costs of those

items.

 CheckoutCart – When the active cart is detected by a checkout, the Shopping System will

send the items and their costs to the checkout with a request to checkout the active cart.

 MonitorAssignment – When a cart that has been checked out is no longer assigned to a

shopper is is made available for assignment to a shopper.
6

 UpdateTotalCartCost – When an item is added to or removed from the active cart, the total

cost of items is updated on the cart display.

 InformStoreClerk – When cart is checking out and the total cost of items in the cart changes,

the store clerk is informed to assist the shopper.

2.4.5 Shopping7

Operations performed by the ActiveCart class:

 MonitorShoppingCart – When a cart is assigned to the store the Shopping System

continuously keeps track of items in the cart until it is no longer assigned to the store.

 SubtractFromPaymentTotal – When an item is removed from the cart, the display is updated

to reflect the cost of items in the cart.

 AddToPaymentTotal - When an item is added to the cart, the display is updated to reflect the

cost of items in the cart.

2.4.6 Items

Operations performed by the Item class:

 UpdateItemsTotal – When product type is added to the cart the number of items of that

product type is sent to the shopping cart display.

2.4.7 Checkout

Operations performed by the Checkout class:

 RequestUserPayForCart – When the active cart is detected by a checkout, the shopper is sent

a message requesting payment for the items in the cart.

 TakePayment – When the shopper confirms that they want to pay for the items, the checkout

is sent information about the items in the cart.

 CheckPaymentAgainstDetectedItems – When payment has been accepted by the checkout

the Shopping System compares the items paid for against the items at the Item Detector and

informs the store clerk if there is an inconsistency.

 WaitForCartToMove – When the cart leaves the Checkout area the customer is informed that

they may remove their card from the cart.

6
 You get the idea that is is the Shopping System that does this by now.

7
 When a relationship has 1-1 cardinality, as in the Shopping to ShoppingCart relationship, these two classes may be

easily combined (as they probably should in this example).

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 21 of 22 Version 1

 InformStoreClerk – If the Cashier informs the Shopping System that payment was not

accepted, or if the items detected are not consistent with the items paid for, the store clerk is

informed.

Analysis Of A Shopping Expedition (Logical) Part 2: Logical Model

Updated: 10/3/2025 3:48 PM Page 22 of 22 Version 1

3 Summary

The logical model takes the use case model and assigns it to the architecture which will be used

to host the use cases. The architecture includes several systems over which the use cases are

distributed. An independent logical model is built for each system.

Potential objects are identified for each action described by the use case. These objects are

combined into an initial class model for a specific system (the Shopping System, for example).

Classes in the model are assigned identifying attributes. Relationships are defined between

classes in terms of cardinality, a direction and foreign key attributes that are passed between the

classes. The class model is normalized to 3NF
8
 (not discussed here).

Each class is modeled by a state transition diagram. The state transition diagram adds dynamic

behavior to the class. A state transition diagram describes the externally visible properties that an

instance of the class may take. Each instance begins by not existing (or in the ‘start’ state). When

an instance is required, it is created and the instance initializes into its first observable state.

Once the instance has completed its work, it is deleted, ending in a non-existent (‘stop’) state.

Lastly, the actions arising from the state transition diagrams are added to the respective classes as

operations, and the class attributes are updated, as necessary, to handle the data required by those

operations.

The logical model is complete, but is it consistent? Part III will demonstrate how is to verify that

the model is internally consistent.

As a final note, I leave it up to the reader to determine what happens to the Shopping System if

the customer unexpectedly removes their card from the shopping cart reader. This is a typical

scenario that will be explored in part III.

8
 Wiki or multiple web sites clarify 3NF .. http://en.wikipedia.org/wiki/Third_normal_form

